Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Med Chem ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722757

RESUMO

Leishmaniasis is a neglected tropical disease that is estimated to afflict over 12 million people. Current drugs for leishmaniasis suffer from serious deficiencies, including toxicity, high cost, modest efficacy, primarily parenteral delivery, and emergence of widespread resistance. We have discovered and developed a natural product-inspired tambjamine chemotype, known to be effective against Plasmodium spp, as a novel class of antileishmanial agents. Herein, we report in vitro and in vivo antileishmanial activities, detailed structure-activity relationships, and metabolic/pharmacokinetic profiles of a large library of tambjamines. A number of tambjamines exhibited excellent potency against both Leishmania mexicana and Leishmania donovani parasites with good safety and metabolic profiles. Notably, tambjamine 110 offered excellent potency and provided partial protection to leishmania-infected mice at 40 and/or 60 mg/kg/10 days of oral treatment. This study presents the first account of antileishmanial activity in the tambjamine family and paves the way for the generation of new oral antileishmanial drugs.

2.
Sci Adv ; 10(16): eadk4492, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640243

RESUMO

Approximately 3.3 billion people live with the threat of Plasmodium vivax malaria. Infection can result in liver-localized hypnozoites, which when reactivated cause relapsing malaria. This work demonstrates that an enzyme-cleavable polymeric prodrug of tafenoquine addresses key requirements for a mass administration, eradication campaign: excellent subcutaneous bioavailability, complete parasite control after a single dose, improved therapeutic window compared to the parent oral drug, and low cost of goods sold (COGS) at less than $1.50 per dose. Liver targeting and subcutaneous dosing resulted in improved liver:plasma exposure profiles, with increased efficacy and reduced glucose 6-phosphate dehydrogenase-dependent hemotoxicity in validated preclinical models. A COGS and manufacturability analysis demonstrated global scalability, affordability, and the ability to redesign this fully synthetic polymeric prodrug specifically to increase global equity and access. Together, this polymer prodrug platform is a candidate for evaluation in human patients and shows potential for P. vivax eradication campaigns.


Assuntos
Antimaláricos , Malária Vivax , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Aminoquinolinas/efeitos adversos , Malária/tratamento farmacológico , Malária Vivax/tratamento farmacológico , Malária Vivax/induzido quimicamente , Fígado
3.
Mil Med ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37963013

RESUMO

INTRODUCTION: Combat-related wound infections complicate the recovery of wounded military personnel, contributing to overall morbidity and mortality. Wound infections in combat settings present unique challenges because of the size and depth of the wounds, the need to administer emergency care in the field, and the need for subsequent treatment in military facilities. Given the increase in multidrug-resistant pathogens, a novel, broad-spectrum antibiotic is desired across this continuum of care when the standard of care fails. Omadacycline was FDA-approved in 2018 for treatment of adults with acute bacterial skin and skin structure infections (ABSSSI), as well as community-acquired bacterial pneumonia (CABP). It is a broad-spectrum antibiotic with activity against gram-positive, gram-negative, and atypical bacterial pathogens, including multidrug-resistant species. Omadacycline can overcome commonly reported tetracycline resistance mechanisms, ribosomal protection proteins, and efflux pumps, and is available in once-daily intravenous or oral formulations. In this review, we discuss the potential role of omadacycline, which is included in the Department of Defense Formulary, in the context of combat wound infections. MATERIALS AND METHODS: A literature review was undertaken for manuscripts published before July 21, 2023. This included a series of publications found via PubMed and a bibliography made publicly available on the Paratek Pharmaceuticals, Inc. website. Publications presenting primary data published in English on omadacycline in relation to ESKAPEE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, and Enterobacter species) pathogens and Clostridioides difficile, including in vitro, in vivo, and clinical data were included. RESULTS: Of 260 identified records, 66 were included for evidence review. Omadacycline has in vitro activity against almost all the ESKAPEE pathogens, apart from P. aeruginosa. Importantly, it has activity against the four most prevalent bacterial pathogens that cause wound infections in the military healthcare system: S. aureus, including methicillin-resistant S. aureus, A. baumannii, K. pneumoniae, and E. coli. In vivo studies in rats have shown that omadacycline is rapidly distributed in most tissues, with the highest tissue-to-blood concentration ratios in bone mineral. The clinical efficacy of omadacycline has been assessed in three separate Phase 3 studies in patients with ABSSSI (OASIS-1 and OASIS-2) and with CABP (OPTIC). Overall, omadacycline has an established safety profile in the treatment of both ABSSSI and CABP. CONCLUSIONS: Omadacycline has broad-spectrum activity, the option to be orally administered and an established safety profile, making it a potentially attractive replacement for moxifloxacin in the military individual first aid kit, especially when accounting for the increasing resistance to fluoroquinolones. Further studies and clinical evaluation are warranted to support broader use of omadacycline to treat combat wound infections in the military healthcare system.

4.
J Cell Mol Med ; 26(13): 3675-3686, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35665597

RESUMO

Primaquine (PQ) and Tafenoquine (TQ) are clinically important 8-aminoquinolines (8-AQ) used for radical cure treatment of P. vivax infection, known to target hepatic hypnozoites. 8-AQs can trigger haemolytic anaemia in individuals with glucose-6-phosphate dehydrogenase deficiency (G6PDd), yet the mechanisms of haemolytic toxicity remain unknown. To address this issue, we used a humanized mouse model known to predict haemolytic toxicity responses in G6PDd human red blood cells (huRBCs). To evaluate the markers of eryptosis, huRBCs were isolated from mice 24-48 h post-treatment and analysed for effects on phosphatidylserine (PS), intracellular reactive oxygen species (ROS) and autofluorescence. Urinalysis was performed to evaluate the occurrence of intravascular and extravascular haemolysis. Spleen and liver tissue harvested at 24 h and 5-7 days post-treatment were stained for the presence of CD169+ macrophages, F4/80+ macrophages, Ter119+ mouse RBCs, glycophorin A+ huRBCs and murine reticulocytes (muRetics). G6PDd-huRBCs from PQ/TQ treated mice showed increased markers for eryptosis as early as 24 h post-treatment. This coincided with an early rise in levels of muRetics. Urinalysis revealed concurrent intravascular and extravascular haemolysis in response to PQ/TQ. Splenic CD169+ macrophages, present in all groups at day 1 post-dosing were eliminated by days 5-7 in PQ/TQ treated mice only, while liver F4/80 macrophages and iron deposits increased. Collectively, our data suggest 8-AQ treated G6PDd-huRBCs have early physiological responses to treatment, including increased markers for eryptosis indicative of oxidative stress, resulting in extramedullary haematopoiesis and loss of splenic CD169+ macrophages, prompting the liver to act as the primary site of clearance.


Assuntos
Antimaláricos , Deficiência de Glucosefosfato Desidrogenase , Malária Vivax , Aminoquinolinas/toxicidade , Animais , Modelos Animais de Doenças , Deficiência de Glucosefosfato Desidrogenase/complicações , Hemólise , Malária Vivax/tratamento farmacológico , Malária Vivax/epidemiologia , Camundongos , Primaquina/uso terapêutico
5.
Antimicrob Agents Chemother ; 66(3): e0182121, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34978892

RESUMO

The active metabolites of primaquine, in particular 5-hydroxyprimaquine, likely responsible for the clearance of dormant hypnozoites, are produced through the hepatic CYP450 2D6 (CYP2D6) enzymatic pathway. With the inherent instability of 5-hydroxyprimaquine, a stable surrogate, 5,6-orthoquinone, can now be detected and measured in the urine as part of primaquine pharmacokinetic studies. This study performed CYP450 2D6 genotyping and primaquine pharmacokinetic testing, to include urine 5,6-orthoquinone, in 27 healthy adult Cambodians, as a preliminary step to prepare for future clinical studies assessing primaquine efficacy for Plasmodium vivax infections. The CYP2D6 *10 reduced activity allele was found in 57% of volunteers, and the CYP2D6 genotypes were dominated by *1/*10 (33%) and *10/*10 (30%). Predicted phenotypes were evenly split between Normal Metabolizer (NM) and Intermediate Metabolizer (IM) except for one volunteer with a gene duplication and unclear phenotype, classifying as either IM or NM. Median plasma primaquine (PQ) area under the curve (AUC) was lower in the NM group (460 h*ng/mL) compared to the IM group (561 h*ng/mL), although not statistically significant. Similar to what has been found in the US study, no 5,6-orthoquinone was detected in the plasma. The urine creatinine-corrected 5,6-orthoquinone AUC in the NM group was almost three times higher than in the IM group, with peak measurements (Tmax) at 4 h. Although there is variation among individuals, future studies examining the relationship between the levels of urine 5,6-orthoquinone and primaquine radical cure efficacy could result in a metabolism biomarker predictive of radical cure.


Assuntos
Antimaláricos , Malária Vivax , Adulto , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Povo Asiático , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Humanos , Malária Vivax/tratamento farmacológico , Plasmodium vivax/genética , Primaquina/análogos & derivados , Primaquina/farmacocinética , Primaquina/uso terapêutico
6.
ACS Med Chem Lett ; 12(12): 1962-1967, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34917261

RESUMO

The discovery of new targets for the treatment of malaria, in particular those aimed at the pre-erythrocytic stage in the life cycle, advanced with the demonstration that orally administered inhibitors of Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) could clear infection in a murine model. This enthusiasm was tempered by unsatisfactory safety and/or pharmacokinetic issues found with these chemotypes. To address the urgent need for new scaffolds, this paper presents initial structure-activity relationships in an imidazole scaffold at four positions, representative in vitro ADME, hERG characterization, and cell-based antiparasitic activity. This series of PfPKG inhibitors has good in vitro PfPKG potency, low hERG activity, and cell-based antiparasitic activity against multiple Plasmodium species that appears to be correlated with the in vitro potency.

7.
ACS Infect Dis ; 7(2): 506-517, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33529014

RESUMO

Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis affecting human populations, yet CL remains largely ignored in drug discovery programs. CL causes disfiguring skin lesions and often relapses after "clinical cure" using existing therapeutics. To expand the pool of anti-CL lead candidates, we implemented an integrated screening platform comprising three progressive Leishmania parasite life cycle forms. We identified tretazicar (CB1954, 5-(aziridin-1-yl)-2,4-dinitrobenzamide) as a potent inhibitor of Leishmania parasite viability across multiple Leishmania species, which translated into complete and prolonged in vivo suppression of CL lesion formation in BALB/c mice when used as a monotherapy and which was superior to liposomal amphotericin B. In addition, oral twice a day administration of tretazicar healed the majority of existing Leishmania major (L. major) cutaneous lesions. In drug combination studies, there was a strong potentiation when subtherapeutic doses of liposomal amphotericin B and tretazicar were simultaneously administered. This drug combination decreased L. major lesion size in mice earlier than individual monotherapy drug treatments and maintained all animals lesion free for up to 64 days after treatment cessation. In contrast, administration of subtherapeutic doses of tretazicar or amphotericin B as monotherapies resulted in no or partial lesion cures, respectively. We propose that tretazicar should be explored as a component of a systemic CL combination therapy and potentially for other diseases where amphotericin B is a first line therapy.


Assuntos
Antiprotozoários , Leishmania major , Anfotericina B , Animais , Antiprotozoários/farmacologia , Aziridinas , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C
8.
Sci Adv ; 7(6)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33547079

RESUMO

Plasmodium parasites must migrate across proteinaceous matrices to infect the mosquito and vertebrate hosts. Plasmin, a mammalian serine protease, degrades extracellular matrix proteins allowing cell migration through tissues. We report that Plasmodium gametes recruit human plasminogen to their surface where it is processed into plasmin by corecruited plasminogen activators. Inhibition of plasminogen activation arrests parasite development early during sexual reproduction, before ookinete formation. We show that increased fibrinogen and fibrin in the blood bolus, which are natural substrates of plasmin, inversely correlate with parasite infectivity of the mosquito. Furthermore, we show that sporozoites, the parasite form transmitted by the mosquito to humans, also bind plasminogen and plasminogen activators on their surface, where plasminogen is activated into plasmin. Surface-bound plasmin promotes sporozoite transmission by facilitating parasite migration across the extracellular matrices of the dermis and of the liver. The fibrinolytic system is a potential target to hamper Plasmodium transmission.

9.
Mil Med ; 186(Suppl 1): 108-115, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33499463

RESUMO

BACKGROUND: The asexual blood stages of the Plasmodium berghei life cycle including merozoites are attractive targets for transmission blocking vaccines and drugs. Improved understanding of P. berghei life cycle stage growth and development would provide new opportunities to evaluate antimalarial vaccines and drugs. METHODS: Blood stage samples from C57BL/6 albino mice infected with P. berghei sporozoites were singly stained with a high binding affinity deoxyribonucleic acid dye, YOYO-1, and measured by flow cytometry (FCM). Duplicate slides were made from samples and stained with diluted Giemsa's and YOYO-1, respectively. Correlated results were compared by FCM, light microscopy, and fluorescent microscopy. RESULTS: Complete life cycle stage determination and analysis by FCM is reported to include merozoites, ring forms, trophozoites, immature, and mature schizonts. FCM demonstrated a clear separation between each stage using their unique fluorescence distribution. When compared to light microscopy, a strong correlation (r 2 = 0.925 to 0.974) was observed in determining the ring forms, trophozoites, and schizonts phases, but only a moderate correlation (r 2 = 0.684 to 0.778) was observed for merozoites. The identification and measurement of merozoites suggest that FCM is a useful technique to monitor the entire life stage of the parasite. Initial stage-specific data demonstrated that mefloquine has a mode of action on mature parasite forms, and artesunic acid was rapidly effective against merozoites and other immature and mature parasite forms with higher killing. CONCLUSION: Blood stage parasites in each individual life stage, including merozoites, are reliably identified and quantified quickly by FCM, making this technique an ideal alternative to microscopy. This integrated whole life stage model, particularly with confirmed determination of merozoite population, could widely be used for drug and vaccine research in malaria therapy and prophylaxis.


Assuntos
Malária , Animais , Ciclo Celular , Citometria de Fluxo , Merozoítos , Camundongos , Plasmodium berghei
10.
J Control Release ; 331: 213-227, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33378692

RESUMO

Primaquine and tafenoquine are the two 8-aminoquinoline (8-AQ) antimalarial drugs approved for malarial radical cure - the elimination of liver stage hypnozoites after infection with Plasmodium vivax. A single oral dose of tafenoquine leads to high efficacy against intra-hepatocyte hypnozoites after efficient first pass liver uptake and metabolism. Unfortunately, both drugs cause hemolytic anemia in G6PD-deficient humans. This toxicity prevents their mass administration without G6PD testing given the approximately 400 million G6PD deficient people across malarial endemic regions of the world. We hypothesized that liver-targeted delivery of 8-AQ prodrugs could maximize liver exposure and minimize erythrocyte exposure to increase their therapeutic window. Primaquine and tafenoquine were first synthesized as prodrug vinyl monomers with self-immolative hydrolytic linkers or cathepsin-cleavable valine-citrulline peptide linkers. RAFT polymerization was exploited to copolymerize these prodrug monomers with hepatocyte-targeting GalNAc monomers. Pharmacokinetic studies of released drugs after intravenous administration showed that the liver-to-plasma AUC ratios could be significantly improved, compared to parent drug administered orally. Single doses of the liver-targeted, enzyme-cleavable tafenoquine polymer were found to be as efficacious as an equivalent dose of the oral parent drug in the P. berghei causal prophylaxis model. They also elicited significantly milder hemotoxicity in the humanized NOD/SCID mouse model engrafted with red blood cells from G6PD deficient donors. The clinical application is envisioned as a single subcutaneous administration, and the lead tafenoquine polymer also showed excellent bioavailability and liver-to-blood ratios exceeding the IV administered polymer. The liver-targeted tafenoquine polymers warrant further development as a single-dose therapeutic via the subcutaneous route with the potential for broader patient administration without a requirement for G6PD diagnosis.


Assuntos
Antimaláricos , Malária Vivax , Malária , Pró-Fármacos , Aminoquinolinas , Animais , Fígado , Malária/tratamento farmacológico , Malária Vivax/tratamento farmacológico , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Polímeros/uso terapêutico , Primaquina , Pró-Fármacos/uso terapêutico
11.
J Med Chem ; 63(19): 10773-10781, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32667203

RESUMO

Visceral leishmaniasis is responsible for up to 30,000 deaths every year. Current treatments have shortcomings that include toxicity and variable efficacy across endemic regions. Previously, we reported the discovery of GNF6702, a selective inhibitor of the kinetoplastid proteasome, which cleared parasites in murine models of leishmaniasis, Chagas disease, and human African trypanosomiasis. Here, we describe the discovery and characterization of LXE408, a structurally related kinetoplastid-selective proteasome inhibitor currently in Phase 1 human clinical trials. Furthermore, we present high-resolution cryo-EM structures of the Leishmania tarentolae proteasome in complex with LXE408, which provides a compelling explanation for the noncompetitive mode of binding of this novel class of inhibitors of the kinetoplastid proteasome.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Leishmaniose Visceral/tratamento farmacológico , Oxazóis/química , Oxazóis/farmacologia , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Animais , Antiprotozoários/uso terapêutico , Cães , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/isolamento & purificação , Leishmania major/efeitos dos fármacos , Leishmania major/isolamento & purificação , Leishmaniose Visceral/parasitologia , Fígado/parasitologia , Macaca fascicularis , Camundongos , Camundongos Endogâmicos BALB C , Oxazóis/uso terapêutico , Inibidores de Proteassoma/uso terapêutico , Pirimidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Triazóis/química
12.
Artigo em Inglês | MEDLINE | ID: mdl-32660993

RESUMO

Previously, ivermectin (1 to 10 mg/kg of body weight) was shown to inhibit the liver-stage development of Plasmodium berghei in orally dosed mice. Here, ivermectin showed inhibition of the in vitro development of Plasmodium cynomolgi schizonts (50% inhibitory concentration [IC50], 10.42 µM) and hypnozoites (IC50, 29.24 µM) in primary macaque hepatocytes when administered as a high dose prophylactically but not when administered in radical cure mode. The safety, pharmacokinetics, and efficacy of oral ivermectin (0.3, 0.6, and 1.2 mg/kg) with and without chloroquine (10 mg/kg) administered for 7 consecutive days were evaluated for prophylaxis or radical cure of P. cynomolgi liver stages in rhesus macaques. No inhibition or delay to blood-stage P. cynomolgi parasitemia was observed at any ivermectin dose (0.3, 0.6, and 1.2 mg/kg). Ivermectin (0.6 and 1.2 mg/kg) and chloroquine (10 mg/kg) in combination were well-tolerated with no adverse events and no significant pharmacokinetic drug-drug interactions observed. Repeated daily ivermectin administration for 7 days did not inhibit ivermectin bioavailability. It was recently demonstrated that both ivermectin and chloroquine inhibit replication of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro Further ivermectin and chloroquine trials in humans are warranted to evaluate their role in Plasmodium vivax control and as adjunctive therapies against COVID-19 infections.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Ivermectina/farmacologia , Fígado/efeitos dos fármacos , Malária/tratamento farmacológico , Plasmodium cynomolgi/efeitos dos fármacos , Animais , Antimaláricos/sangue , Antimaláricos/farmacocinética , Disponibilidade Biológica , Cloroquina/sangue , Cloroquina/farmacocinética , Esquema de Medicação , Combinação de Medicamentos , Sinergismo Farmacológico , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/parasitologia , Ivermectina/sangue , Ivermectina/farmacocinética , Fígado/parasitologia , Macaca mulatta , Malária/parasitologia , Masculino , Parasitemia/tratamento farmacológico , Plasmodium cynomolgi/crescimento & desenvolvimento , Plasmodium cynomolgi/patogenicidade , Cultura Primária de Células , Esquizontes/efeitos dos fármacos , Esquizontes/crescimento & desenvolvimento
13.
J Med Chem ; 63(11): 6179-6202, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32390431

RESUMO

The global impact of malaria remains staggering despite extensive efforts to eradicate the disease. With increasing drug resistance and the absence of a clinically available vaccine, there is an urgent need for novel, affordable, and safe drugs for prevention and treatment of malaria. Previously, we described a novel antimalarial acridone chemotype that is potent against both blood-stage and liver-stage malaria parasites. Here, we describe an optimization process that has produced a second-generation acridone series with significant improvements in efficacy, metabolic stability, pharmacokinetics, and safety profiles. These findings highlight the therapeutic potential of dual-stage targeting acridones as novel drug candidates for further preclinical development.


Assuntos
Acridonas/química , Antimaláricos/química , Acridonas/farmacocinética , Acridonas/farmacologia , Acridonas/uso terapêutico , Administração Oral , Animais , Antimaláricos/farmacocinética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Meia-Vida , Células Hep G2 , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária/tratamento farmacológico , Malária/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Relação Estrutura-Atividade
15.
J Infect Dis ; 220(11): 1761-1770, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31549155

RESUMO

BACKGROUND: Plasmodium vivax malaria requires a 2-week course of primaquine (PQ) for radical cure. Evidence suggests that the hepatic isoenzyme cytochrome P450 2D6 (CYP2D6) is the key enzyme required to convert PQ into its active metabolite. METHODS: CYP2D6 genotypes and phenotypes of 550 service personnel were determined, and the pharmacokinetics (PK) of a 30-mg oral dose of PQ was measured in 45 volunteers. Blood and urine samples were collected, with PQ and metabolites were measured using ultraperformance liquid chromatography with mass spectrometry. RESULTS: Seventy-six CYP2D6 genotypes were characterized for 530 service personnel. Of the 515 personnel for whom a single phenotype was predicted, 58% had a normal metabolizer (NM) phenotype, 35% had an intermediate metabolizer (IM) phenotype, 5% had a poor metabolizer (PM) phenotype, and 2% had an ultrametabolizer phenotype. The median PQ area under the concentration time curve from 0 to ∞ was lower for the NM phenotype as compared to the IM or PM phenotypes. The novel 5,6-ortho-quinone was detected in urine but not plasma from all personnel with the NM phenotype. CONCLUSION: The plasma PK profile suggests PQ metabolism is decreased in personnel with the IM or PM phenotypes as compared to those with the NM phenotype. The finding of 5,6-ortho-quinone, the stable surrogate for the unstable 5-hydroxyprimaquine metabolite, almost exclusively in personnel with the NM phenotype, compared with sporadic or no production in those with the IM or PM phenotypes, provides further evidence for the role of CYP2D6 in radical cure. CLINICAL TRIALS REGISTRATION: NCT02960568.


Assuntos
Antimaláricos/metabolismo , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Genótipo , Primaquina/metabolismo , Administração Oral , Adolescente , Adulto , Antimaláricos/administração & dosagem , Antimaláricos/farmacocinética , Análise Química do Sangue , Cromatografia Líquida de Alta Pressão , Estudos de Coortes , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Militares , Fenótipo , Plasma/química , Primaquina/administração & dosagem , Primaquina/farmacocinética , Estados Unidos , Urinálise , Urina/química , Adulto Jovem
16.
Ann Pharmacother ; 52(3): 251-256, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29047306

RESUMO

BACKGROUND: There is no established method for monitoring the anticoagulant effects of apixaban and rivaroxaban. Linear correlation between serum levels and anti-Xa activity has been shown, with r2 ranging from 0.88 to 0.99. However, there are minimal data in patients receiving apixaban 5 mg twice daily or rivaroxaban 20 mg once daily. OBJECTIVE: To evaluate the anti-Xa activity and serum levels at those doses and compare the trough anti-Xa activity. METHODS: This was a single-center prospective study,approved by the institutional review board. Patients on an inappropriate dose or receiving an interacting drug were excluded. Blood samples were drawn 0.5 to 3 hours before a dose for both agents, 2 to 3 hours after an apixaban dose, and 12 to 16 hours after a rivaroxaban dose. Anti-Xa activity and serum levels were determined, and correlation was done via regression analysis. Trough anti-Xa activity was compared using a t-test. RESULTS: The study enrolled 88 patients receiving each drug. The r2 values were 0.79 and 0.87 for apixaban and rivaroxaban, respectively. The mean trough anti-Xa activity was 1.79 ± 0.96 IU/mL for apixaban and 1.25 ± 0.88 IU for rivaroxaban ( P < 0.01). The trough sample was drawn a mean of 1.3 and 1.8 hours prior to the next dose for apixaban and rivaroxaban, respectively ( P < 0.01). CONCLUSIONS: Good correlation was shown between anti-Xa activity and serum levels. The clinical utility of monitoring anti-Xa activity and the significance of the difference in trough anti-Xa activity for these agents remains to be established.


Assuntos
Inibidores do Fator Xa/sangue , Fator Xa/análise , Pirazóis/sangue , Piridonas/sangue , Rivaroxabana/sangue , Idoso , Inibidores do Fator Xa/farmacocinética , Inibidores do Fator Xa/uso terapêutico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pirazóis/farmacocinética , Pirazóis/uso terapêutico , Piridonas/farmacocinética , Piridonas/uso terapêutico , Rivaroxabana/farmacocinética , Rivaroxabana/uso terapêutico
17.
Malar J ; 15(1): 280, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27188854

RESUMO

BACKGROUND: The liver-stage anti-malarial activity of primaquine and other 8-aminoquinoline molecules has been linked to bio-activation through CYP 2D6 metabolism. Factors such as CYP 2D6 poor metabolizer status and/or co-administration of drugs that inhibit/interact with CYP 2D6 could alter the pharmacological properties of primaquine. METHODS: In the present study, the inhibitory potential of the selective serotonin reuptake inhibitor (SSRI) and serotonin norepinephrine reuptake inhibitor (SNRI) classes of antidepressants for CYP 2D6-mediated primaquine metabolism was assessed using in vitro drug metabolism and in vivo pharmacological assays. RESULTS: The SSRI/SNRI classes of drug displayed a range of inhibitory activities on CYP 2D6-mediated metabolism of primaquine in vitro (IC50 1-94 µM). Fluoxetine and paroxetine were the most potent inhibitors (IC50 ~1 µM) of CYP 2D6-mediated primaquine metabolism, while desvenlafaxine was the least potent (IC50 ~94 µM). The most potent CYP 2D6 inhibitor, fluoxetine, was chosen to investigate the potential pharmacological consequences of co-administration with primaquine in vivo. The pharmacokinetics of a CYP 2D6-dependent primaquine metabolite were altered upon co-administration with fluoxetine. Additionally, in a mouse malaria model, co-administration of fluoxetine with primaquine reduced primaquine anti-malarial efficacy. CONCLUSIONS: These results are the first from controlled pre-clinical experiments that indicate that primaquine pharmacological properties can be modulated upon co-incubation/administration with drugs that are known to interact with CYP 2D6. These results highlight the potential for CYP 2D6-mediated drug-drug interactions with primaquine and indicate that the SSRI/SNRI antidepressants could be used as probe molecules to address the primaquine-CYP 2D6 DDI link in clinical studies. Additionally, CYP 2D6-mediated drug-drug interactions can be considered when examining the possible causes of human primaquine therapy failures.


Assuntos
Antidepressivos/farmacocinética , Antimaláricos/farmacocinética , Citocromo P-450 CYP2D6/metabolismo , Interações Medicamentosas , Primaquina/farmacocinética , Inibidores da Recaptação de Serotonina e Norepinefrina/farmacocinética , Animais , Antidepressivos/administração & dosagem , Antidepressivos/metabolismo , Antimaláricos/administração & dosagem , Antimaláricos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Malária/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Primaquina/administração & dosagem , Primaquina/metabolismo , Inibidores da Recaptação de Serotonina e Norepinefrina/administração & dosagem , Inibidores da Recaptação de Serotonina e Norepinefrina/metabolismo , Resultado do Tratamento
18.
Pharmacol Ther ; 161: 1-10, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27016470

RESUMO

Primaquine is the only antimalarial drug available to clinicians for the treatment of relapsing forms of malaria. Primaquine development and usage dates back to the 1940s and has been administered to millions of individuals to treat and eliminate malaria infections. Primaquine therapy is not without disadvantages, however, as it can cause life threatening hemolysis in humans with glucose-6-phosphate dehydrogenase (G6PD) deficiency. In addition, the efficacy of primaquine against relapsing malaria was recently linked to CYP 2D6 mediated activation to an active metabolite, the structure of which has escaped definitive identification for over 75years. CYP 2D6 is highly polymorphic among various human populations adding further complexity to a comprehensive understanding of primaquine pharmacology. This review aims to discuss primaquine pharmacology in the context of state of the art understanding of CYP 2D6 mediated 8-aminoquinoline metabolic activation, and shed light on the current knowledge gaps of 8-aminoquinoline mechanistic understanding against relapsing malaria.


Assuntos
Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Primaquina/metabolismo , Primaquina/farmacologia , Pró-Fármacos/metabolismo , Animais , Antimaláricos/efeitos adversos , Antimaláricos/metabolismo , Antimaláricos/farmacocinética , Antimaláricos/farmacologia , Interações Medicamentosas , Humanos , Metabolômica , Polimorfismo Genético , Primaquina/efeitos adversos , Primaquina/farmacocinética , Pró-Fármacos/efeitos adversos , Pró-Fármacos/farmacologia
19.
Antimicrob Agents Chemother ; 59(7): 3864-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25870069

RESUMO

Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations.


Assuntos
Aminoquinolinas/farmacocinética , Antimaláricos/farmacocinética , Citocromo P-450 CYP2D6/genética , Aminoquinolinas/sangue , Animais , Antimaláricos/sangue , Área Sob a Curva , Biotransformação , Citocromo P-450 CYP2D6/metabolismo , Meia-Vida , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Primaquina/farmacocinética
20.
Bioorg Med Chem ; 23(9): 2176-86, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25801154

RESUMO

We herein report the design and synthesis of a novel series of thiophene- and furan-based aminoquinoline derivatives which were found to be potent antimalarials and inhibitors of ß-hematin polymerization. Tested compounds were 3-71 times more potent in vitro than CQ against chloroquine-resistant (CQR) W2 strain with benzonitrile 30 being as active as mefloquine (MFQ), and almost all synthesized aminoquinolines (22/27) were more potent than MFQ against multidrug-resistant (MDR) strain C235. In vivo experiments revealed that compound 28 showed clearance with recrudescence at 40 mg/kg/day, while 5/5 mice survived in Thompson test at 160 mg/kg/day.


Assuntos
Aminoquinolinas/farmacologia , Antimaláricos/farmacologia , Furanos/farmacologia , Plasmodium berghei/efeitos dos fármacos , Tiofenos/farmacologia , Aminoquinolinas/síntese química , Aminoquinolinas/química , Animais , Antimaláricos/síntese química , Antimaláricos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Furanos/química , Células Hep G2 , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tiofenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA